Coordinate Geometry

1 A circle has the equation $x^{2}+y^{2}-8 x+7=0$.
a Find the coordinates of the centre of the circle.
b Find the radius of the circle.

2 A circle has the equation $x^{2}+y^{2}-6 x+2 y-15=0$.
a Find the coordinates of the centre of the circle.
b Find the radius of the circle.
c Show that the tangent to the circle at the point $(7,2)$ has equation

$$
\begin{equation*}
4 x+3 y-34=0 \tag{4}
\end{equation*}
$$

3 A circle has the equation $x^{2}+y^{2}+6 x-8 y+21=0$.
a Find the coordinates of the centre and the radius of the circle.
The point P lies on the circle.
b Find the greatest distance of P from the origin.
4

The diagram shows the circle with equation $x^{2}+y^{2}=50$ and the tangents to the circle at the points $A(5,5)$ and $B(1,-7)$.
a Find an equation of the tangent to the circle at A.
b Show that the tangent to the circle at B has the equation

$$
\begin{equation*}
x-7 y-50=0 \tag{3}
\end{equation*}
$$

c Find the coordinates of the point C where the tangents to the circle at A and B intersect.
5 Circle has the equation $x^{2}+y^{2}-2 a y=0$, where a is a positive constant.
a Find the coordinates of the centre and the radius of
Circle has the equation $x^{2}+y^{2}-2 b x=0$, where b is a constant and $b>a$.
b Sketch and on the same diagram.
6 The circle C has the equation $x^{2}+y^{2}+2 x-14 y+30=0$.
a Find the coordinates of the centre of C.
b Find the radius of C, giving your answer in the form $k \sqrt{5}$.
c Show that the line $y=2 x-1$ is a tangent to C and find the coordinates of the point of contact.
$7 \quad$ The circle C has equation $x^{2}+y^{2}-6 x-12 y+28=0$.
a Find the coordinates of the centre of C.
The line $y=x-2$ intersects C at the points A and B.
b Find the length $A B$ in the form $k \sqrt{2}$.
8 The circle C has centre $(8,-1)$ and passes through the point $(4,1)$.
a Find an equation for C.
b Show that the line with equation $x+2 y+4=0$ is a tangent to C.
$9 \quad$ The points $P(-10,2), Q(8,14)$ and $R(-2,-10)$ all lie on circle C.
a Show that $P R$ is perpendicular to $P Q$.
b Hence, show that C has the equation $x^{2}+y^{2}-6 x-4 y-156=0$.
10 A circle has the equation $x^{2}+y^{2}-2 x-7 y-16=0$.
a Find the coordinates of the centre of the circle.
b Show that the radius of the circle is $k \sqrt{13}$, where k is an exact fraction to be found.
c Find an equation of the tangent to the circle at the point $(4,8)$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

The line with equation $x-2 y+3=0$ intersects the circle C at the points A and B as shown in the diagram above. Given that the centre of C has coordinates $(6,7)$,
a find the coordinates of the mid-point of the chord $A B$.
Given also that the x-coordinate of the point A is 3 ,
b find the coordinates of the point B,
c find an equation for C.
12 The circle C has equation $x^{2}+y^{2}-8 x-16 y+72=0$.
a Find the coordinates of the centre and the radius of C.
b Find the distance of the centre of C from the origin in the form $k \sqrt{5}$.
The point A lies on C and the tangent to C at A passes through the origin O.
c Show that $O A=6 \sqrt{2}$.
13 The circle C has equation $x^{2}+y^{2}-4 x-6=0$ and the line l has equation $y=3 x-6$.
a Show that l passes through the centre of C.
b Find an equation for each tangent to C that is parallel to l.

